ადმინისტრაცია
სამეცნიერო საბჭო
როგორ მოხვიდეთ
მოკლე ისტორია
ელეფთერ ანდრონიკაშვილი
სიახლე
ფოტო ალბომი
კვლევების თემატიკა
მიმდინარე საგრანტო
     პროექტები

პუბლიკაციები
კოსმოსური სხივების
     ფიზიკა


ATLAS კოლაბორაცია

CMS კოლაბორაცია

          

რჩეული პუბლიკაციები (2008 -2019)

I. ნაწილაკთა თეორია და ფენომენოლოგია

I.1 წარმოშობილი ყალიბური და გრავიტაციული თეორიები, დიდი
გაერთიანება, კომპოზიტური მოდელები


The SU(8) GUT with composite quarks and leptons.
By J.L. Chkareuli.
[arXiv:1901.07428 [hep-ph]].
10.1016/j.nuclphysb.2019.02.009.
Nucl.Phys. B941 (2019) 425-457.

Emergent photons and gravitons.
By J.L. Chkareuli, J. Jejelava, Z. Kepuladze.
[arXiv:1811.09578 [physics.gen-ph]].
Bled Workshops Phys. 19 (2018) no.2, 74-89.

Eightfold Way for Composite Quarks and Leptons.
By J.L. Chkareuli.
[arXiv:1711.08321 [physics.gen-ph]].
Bled Workshops Phys. 18 (2017) no.2, 25-43.

Lorentzian Goldstone modes shared among photons and gravitons.
By J.L. Chkareuli, J. Jejelava, Z. Kepuladze.
[arXiv:1709.02736 [hep-th]].
10.1140/epjc/s10052-018-5647-x.
Eur.Phys.J. C78 (2018) no.2, 156.

On the origin of Poincaré gauge gravity.
By J.L. Chkareuli.
10.1016/j.physletb.2017.04.012.
Phys.Lett. B769 (2017) 377-384.

Poincaré gauge gravity: An emergent scenario.
By J.L. Chkareuli.
[arXiv:1703.01492 [gr-qc]].
10.1103/PhysRevD.95.084051.
Phys.Rev. D95 (2017) no.8, 084051.

Emergent Yang–Mills theories from universal extra dimensions.
By J.L. Chkareuli, Z. Kepuladze.
10.1142/S0217732317500298.
Mod.Phys.Lett. A32 (2017) no.05, 1750029.

Gauge Symmetries Emerging from Extra Dimensions.
By J.L. Chkareuli, Z. Kepuladze.
[arXiv:1607.05919 [hep-th]].
10.1103/PhysRevD.94.065013.
Phys.Rev. D94 (2016) no.6, 065013.

Emergent SUSY Theories: QED, SM & GUT.
By J.L. Chkareuli.
[arXiv:1410.6837 [hep-th]].
Bled Workshops Phys. 15 (2014) no.2, 46-65.

Photon and photino as Nambu-Goldstone zero modes in an emergent SUSY QED.
By J.L. Chkareuli.
[arXiv:1403.0436 [hep-th]].
10.1140/epjc/s10052-014-2906-3.
Eur.Phys.J. C74 (2014) 2906.

Gauge Fields as Goldstone Bosons Triggered by Spontaneously Broken
Supersymmetry.

By J.L. Chkareuli.
[arXiv:1305.6898 [hep-ph]].
10.1103/PhysRevD.90.065015.
Phys.Rev. D90 (2014) no.6, 065015.

On emergent SUSY gauge theories.
By J.L. Chkareuli.
[arXiv:1305.4470 [hep-ph]].
Bled Workshops Phys. 14 (2013) no.2, 52-64.

Emergent gauge theories and supersymmetry: a QED primer.
By J.L. Chkareuli.
[arXiv:1212.6939 [hep-ph]].
10.1016/j.physletb.2013.02.053.
Phys.Lett. B721 (2013) 146-150.

On Emergent Gauge and Gravity Theories.
By J.L. Chkareuli.
[arXiv:1206.1368 [hep-th]].
10.1142/9789814440349_0007.

Standard Model with Partial Gauge Invariance.
By J.L. Chkareuli, Z. Kepuladze.
[arXiv:1108.0399 [hep-ph]].
10.1140/epjc/s10052-012-1954-9.
Eur.Phys.J. C72 (2012) 1954.

Spontaneously Generated Tensor Field Gravity.
By J.L. Chkareuli, C.D. Froggatt, H.B. Nielsen.
[arXiv:1102.5440 [hep-th]].
10.1016/j.nuclphysb.2011.03.009.
Nucl.Phys. B848 (2011) 498-522.

Graviton as a Goldstone boson: Nonlinear Sigma Model for Tensor
Field Gravity.

By J.L. Chkareuli, J.G. Jejelava, G. Tatishvili.
[arXiv:1008.3707 [hep-th]].
10.1016/j.physletb.2010.11.068.
Phys.Lett. B696 (2011) 124-130.

Vector-Field Domain Walls.
By J.L. Chkareuli, Archil Kobakhidze, Raymond R. Volkas.
[arXiv:0901.0796 [hep-th]].
10.1103/PhysRevD.80.065008.
Phys.Rev. D80 (2009) 065008.

Spontaneous Lorentz Violation via QED with Non-Exact Gauge Invariance.
By J.L. Chkareuli, Z. Kepuladze, G. Tatishvili.
[arXiv:0802.1950 [hep-th]].
10.1140/epjc/s10052-008-0574-x.
Eur.Phys.J. C55 (2008) 309-316.

Constrained gauge fields from spontaneous Lorentz violation.
By J.L. Chkareuli, C.D. Froggatt, J.G. Jejelava, H.B. Nielsen.
[arXiv:0710.3479 [hep-th]].
10.1016/j.nuclphysb.2007.12.006.
Nucl.Phys. B796 (2008) 211-223.

Spontaneous Lorentz Violation: Non-Abelian Gauge Fields as Pseudo-Goldstone
Vector Bosons.

By J.L. Chkareuli, J.G. Jejelava.
[arXiv:0704.0553 [hep-th]].
10.1016/j.physletb.2007.11.073.
Phys.Lett. B659 (2008) 754-760.

I.2 კვარკებისა და ლეპტონების გაერთიანებული
სუპერსიმეტრიული მოდელები


Three-loop neutrino masses via new massive gauge bosons from $E_6$ GUT.
By Bhaskar Dutta, Sumit Ghosh, Ilia Gogoladze, Tianjun Li.
[arXiv:1805.01866 [hep-ph]].
10.1103/PhysRevD.98.055028.
Phys.Rev. D98 (2018) no.5, 055028.

Natural Higgs Inflation, Gauge Coupling Unification, and Neutrino Masses.
By Heng-Yu Chen, Ilia Gogoladze, Shan Hu, Tianjun Li, Lina Wu.
[arXiv:1805.00161 [hep-ph]].

Status Update on Selective SUSY GUT Inspired Models.
By Muhammad Adeel Ajaib, Ilia Gogoladze.
[arXiv:1710.07842 [hep-ph]].

The Minimal GUT with Inflaton and Dark Matter Unification.
By Heng-Yu Chen, Ilia Gogoladze, Shan Hu, Tianjun Li, Lina Wu.
[arXiv:1703.07542 [hep-ph]].
10.1140/epjc/s10052-017-5496-z.
Eur.Phys.J. C78 (2018) no.1, 26.

Radiative Electroweak Symmetry Breaking in Standard Model Extensions.
By K.S. Babu, Ilia Gogoladze, S. Khan.
[arXiv:1612.05185 [hep-ph]].
10.1103/PhysRevD.95.095013.
Phys.Rev. D95 (2017) no.9, 095013.

Muon g - 2 in gauge mediated supersymmetry breaking models with
adjoint messengers.

By K.S. Babu, Ilia Gogoladze, S. Khan.
[arXiv:1612.05185 [hep-ph]].
10.1103/PhysRevD.95.095013.
Phys.Rev. D95 (2017) no.9, 095013.

Gauge Mediation Models with Adjoint Messengers.
By Ilia Gogoladze, Azar Mustafayev, Qaisar Shafi, Cem Salih Un.
[arXiv:1609.02124 [hep-ph]].
10.1103/PhysRevD.94.075012.
Phys.Rev. D94 (2016) no.7, 075012.

Proton Decay.
By R. Brock, Ilia Gogoladze et al
Proceedings of Workshop on Fundamental Physics at the Intensity
Frontier(Rockville, MD, USA, 2011)

SU(6) GUT origin of the TeV-scale vectorlike particles associated with the
750 GeV diphoto resonance.

By Bhaskar Dutta, Yu Gao, Tathagata Ghosh, Ilia Gogoladze, Tianjun Li, Joel W. Walker.
[arXiv:1604.07838 [hep-ph]].
10.1103/PhysRevD.94.036006.
Phys.Rev. D94 (2016) no.3, 036006.

Diphoton Excess in Consistent Supersymmetric SU(5) Models with Vector-like
Particles.

By Bhaskar Dutta, Yu Gao, Tathagata Ghosh, Ilia Gogoladze, Tianjun Li, Qaisar Shafi,
Joel W. Walker.
[arXiv:1601.00866 [hep-ph]].

Interpretation of the diphoton excess at CMS and ATLAS.
By Bhaskar Dutta, Yu Gao, Tathagata Ghosh, Ilia Gogoladze, Tianjun Li.
[arXiv:1512.05439 [hep-ph]].
10.1103/PhysRevD.93.055032.
Phys.Rev. D93 (2016) no.5, 055032.

Reconciling the muon g−2 , a 125 GeV Higgs boson, and dark matter in gauge
mediation models.

By Ilia Gogoladze, Qaisar Shafi, Cem Salih Ün.
[arXiv:1509.07906 [hep-ph]].
10.1103/PhysRevD.92.115014.
Phys.Rev. D92 (2015) no.11, 115014.

Neutralinos and sleptons at the LHC in light of muon $(g-2)_{\mu}$.
By M. Adeel Ajaib, Bhaskar Dutta, Tathagata Ghosh, Ilia Gogoladze, Qaisar Shafi.
[arXiv:1505.05896 [hep-ph]].
10.1103/PhysRevD.92.075033.
Phys.Rev. D92 (2015) no.7, 075033.

Yukawa Unification and Sparticle Spectroscopy in Gauge Mediation Models.
By Ilia Gogoladze, Azar Mustafayev, Qaisar Shafi, Cem Salih Un.
[arXiv:1501.07290 [hep-ph]].
10.1103/PhysRevD.91.096005.
Phys.Rev. D91 (2015) no.9, 096005.

GUT-inspired supersymmetric model for h→γγ and the muon g-2.
By M. Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi.
[arXiv:1501.04125 [hep-ph]].
10.1103/PhysRevD.91.095005.
Phys.Rev. D91 (2015) no.9, 095005.

SUSY SO(10) GUT with Higgs mass prediction.
By Ilia Gogoladze.
10.1063/1.4883429.
AIP Conf.Proc. 1604 (2015) no.1, 185-192.

3.5 keV X-ray line and R-Parity Conserving Supersymmetry.
By Bhaskar Dutta, Ilia Gogoladze, Rizwan Khalid, Qaisar Shafi.
[arXiv:1407.0863 [hep-ph]].
10.1007/JHEP11(2014)018.
JHEP 1411 (2014) 018.

Muon g-2, 125 GeV Higgs boson, and neutralino dark matter in a flavor
symmetry-based MSSM.

By K.S. Babu, Ilia Gogoladze, Qaisar Shafi, Cem Salih Ün.
[arXiv:1406.6965 [hep-ph]].
10.1103/PhysRevD.90.116002.
Phys.Rev. D90 (2014) no.11, 116002

Flavor Symmetry Based MSSM (sMSSM): Theoretical Models and
Phenomenological Analysis.

By K.S. Babu, Ilia Gogoladze, Shabbar Raza, Qaisar Shafi.
[arXiv:1406.6078 [hep-ph]].
10.1103/PhysRevD.90.056001.
Phys.Rev. D90 (2014) no.5, 056001.

Nonuniversal Gaugino Masses and Muon g-2.
By Ilia Gogoladze, Fariha Nasir, Qaisar Shafi, Cem Salih Un.
[arXiv:1403.2337 [hep-ph]].
10.1103/PhysRevD.90.035008.
Phys.Rev. D90 (2014) no.3, 035008.

Split sfermion families, Yukawa unification and muon $g - 2$.
By M. Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi, Cem Salih Ün.
[arXiv:1402.4918 [hep-ph]].
10.1007/JHEP05(2014)079.
JHEP 1405 (2014) 079.

Top Quark and Higgs Boson Masses in Supersymmetric Models.
By Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Qaisar Shafi.
[arXiv:1402.2924 [hep-ph]].
10.1007/JHEP04(2014)109.
JHEP 1404 (2014) 109.

Effects of Neutrino Inverse Seesaw Mechanism on the Sparticle Spectrum in
CMSSM and NUHM2.

By I. Gogoladze, B. He, A. Mustafayev, S. Raza, Q. Shafi.
[arXiv:1401.8251 [hep-ph]].
10.1007/JHEP05(2014)078.
JHEP 1405 (2014) 078.

Working Group Report: Baryon Number Violation.
By K.S. Babu et al.
[arXiv:1311.5285 [hep-ph]].

Working Group Report: Higgs Boson.
By Sally Dawson et al..
[arXiv:1310.8361 [hep-ex]].

Higgs and Sparticle Masses from Yukawa Unified SO(10):
A Snowmass White Paper.

By M. Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi, Cem Salih Un.
[arXiv:1308.4652 [hep-ph]].

125 GeV Higgs Boson From Gauge-Higgs Unification: A Snowmass white paper.
By Ilia Gogoladze, Nobuchika Okada, Qaisar Shafi.
[arXiv:1307.5079 [hep-ph]].

Sparticle Spectroscopy from SO(10) GUT with a Unified Higgs Sector.
By M. Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi.
[arXiv:1307.4882 [hep-ph]].
10.1103/PhysRevD.88.095019.
Phys.Rev. D88 (2013) no.9, 095019.

SO(10) as a Framework for Natural Supersymmetry.
By Ilia Gogoladze, Fariha Nasir, Qaisar Shafi.
[arXiv:1306.5699 [hep-ph]].
10.1007/JHEP11(2013)173.
JHEP 1311 (2013) 173.

A Predictive Yukawa Unified SO(10) Model: Higgs and Sparticle Masses.
By M. Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi, Cem Salih Un.
[arXiv:1303.6964 [hep-ph]].
10.1007/JHEP07(2013)139.
JHEP 1307 (2013) 139.

Non-Universal Gaugino Masses and Natural Supersymmetry.
By Ilia Gogoladze, Fariha. Nasir, Qaisar. Shafi.
[arXiv:1212.2593 [hep-ph]].
10.1142/S0217751X13500462.
Int.J.Mod.Phys. A28 (2013) 1350046.

Inverse Seesaw in NMSSM and 126 GeV Higgs Boson.
By Ilia Gogoladze, Bin He, Qaisar Shafi.
[arXiv:1209.5984 [hep-ph]].
10.1016/j.physletb.2012.11.043.
Phys.Lett. B718 (2013) 1008-1013.

Higgs Boson Production and Decay: Effects from Light Third Generation and
Vectorlike Matter.

By M.Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi.
[arXiv:1207.7068 [hep-ph]].
10.1103/PhysRevD.86.095028.
Phys.Rev. D86 (2012) 095028.

Fundamental Physics at the Intensity Frontier.
By J.L. Hewett et al..
[arXiv:1205.2671 [hep-ex]].
10.2172/1042577.


Revisiting mGMSB in Light of a 125 GeV Higgs.
By M.Adeel Ajaib, Ilia Gogoladze, Fariha Nasir, Qaisar Shafi.
[arXiv:1204.2856 [hep-ph]].
10.1016/j.physletb.2012.06.036.
Phys.Lett. B713 (2012) 462-468.

125 GeV Higgs Boson from t-b-tau Yukawa Unification.
By Ilia Gogoladze, Qaisar Shafi, Cem Salih Un.
[arXiv:1203.6082 [hep-ph]].
10.1007/JHEP07(2012)055.
JHEP 1207 (2012) 055.

Sparticle mass spectra from SU(5) SUSY GUT models with $b-\tau$
Yukawa coupling unification.

By Howard Baer, Ilia Gogoladze, Azar Mustafayev, Shabbar Raza, Qaisar Shafi.
[arXiv:1201.4412 [hep-ph]].
10.1007/JHEP03(2012)047.
JHEP 1203 (2012) 047.

Variety of SO(10) GUTs with Natural Doublet-Triplet Splitting via the
Missing Partner Mechanism.

By K.S. Babu, Ilia Gogoladze, Pran Nath, Raza M. Syed.
[arXiv:1112.5387 [hep-ph]].
10.1103/PhysRevD.85.075002.
Phys.Rev. D85 (2012) 075002.

Higgs Boson Mass from t-b-$\tau$ Yukawa Unification.
By Ilia Gogoladze, Qaisar Shafi, Cem Salih Un.
[arXiv:1112.2206 [hep-ph]].
10.1007/JHEP08(2012)028.
JHEP 1208 (2012) 028.

Neutralino-Sbottom Coannihilation in SU(5).
By Ilia Gogoladze, Shabbar Raza, Qaisar Shafi.
[arXiv:1111.6299 [hep-ph]].
10.1007/JHEP03(2012)054.
JHEP 1203 (2012) 054.

SO(10) Yukawa unification with $\mu <$ 0.
By Ilia Gogoladze, Qaisar Shafi, Cem Salih Ün.
[arXiv:1107.1228 [hep-ph]].
10.1016/j.physletb.2011.09.006.
Phys.Lett. B704 (2011) 201-205.

Sparticle Spectroscopy with Neutralino Dark matter from t-b-tau
Quasi-Yukawa Unification.

By Shahida Dar, Ilia Gogoladze, Qaisar Shafi, Cem Salih Un.
[arXiv:1105.5122 [hep-ph]].
10.1103/PhysRevD.84.085015.
Phys.Rev. D84 (2011) 085015.

Light stop from b–$\tau$ Yukawa unification.
By Ilia Gogoladze, Shabbar Raza, Qaisar Shafi.
[arXiv:1104.3566 [hep-ph]].
10.1016/j.physletb.2011.11.026.
Phys.Lett. B706 (2012) 345-349.

Higgs and Sparticle Spectroscopy with Gauge-Yukawa Unification.
By Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Qaisar Shafi.
[arXiv:1102.0013 [hep-ph]].
10.1007/JHEP06(2011)117.
JHEP 1106 (2011) 117.

Muons from Neutralino Annihilations in the Sun: Flipped SU(5).
By Muhammad Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi.
[arXiv:1101.0835 [hep-ph]].
10.1103/PhysRevD.83.075017.
Phys.Rev. D83 (2011) 075017.

Direct and Indirect Detection and LHC Signals of Bino-Higgsino Dark Matter.
By Ilia Gogoladze, Rizwan Khalid, Yukihiro Mimura, Qaisar Shafi.
[arXiv:1012.1613 [hep-ph]].
10.1103/PhysRevD.83.095007.
Phys.Rev. D83 (2011) 095007.

$t-b-\tau$ Yukawa unification for $\mu < 0$ with a sub-TeV
sparticle spectrum.

By Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Qaisar Shafi.
[arXiv:1008.2765 [hep-ph]].
10.1007/JHEP12(2010)055.
JHEP 1012 (2010) 055.

New Fermions at the LHC and Mass of the Higgs Boson.
By Ilia Gogoladze, Bin He, Qaisar Shafi.
[arXiv:1004.4217 [hep-ph]].
10.1016/j.physletb.2010.05.076.
Phys.Lett. B690 (2010) 495-500.

Color Triplet Diquarks at the LHC.
By Ilia Gogoladze, Yukihiro Mimura, Nobuchika Okada, Qaisar Shafi.
[arXiv:1001.5260 [hep-ph]].
10.1016/j.physletb.2010.02.068.
Phys.Lett. B686 (2010) 233-238.

CDMS II Inspired Neutralino Dark Matter in Flipped SU(5).
By Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Qaisar Shafi.
[arXiv:0912.5411 [hep-ph]].
10.1142/S0217732310034602.
Mod.Phys.Lett. A25 (2010) 3371-3379.

Observable n - anti-n Oscillations with New Physics at LHC.
By M.Adeel Ajaib, I. Gogoladze, Yukihiro Mimura, Q. Shafi.
[arXiv:0910.1877 [hep-ph]].
10.1103/PhysRevD.80.125026.
Phys.Rev. D80 (2009) 125026.

Coannihilation Scenarios and Particle Spectroscopy in
SU(4)(c) x SU(2)(L) x SU(2)(R).

By Ilia Gogoladze, Rizwan Khalid, Qaisar Shafi.
[arXiv:0908.0731 [hep-ph]].
10.1103/PhysRevD.80.095016.
Phys.Rev. D80 (2009) 095016.

Amelioration of Little Hierarchy Problem in SU(4)(c) x SU(2)(L) x SU(2)(R).
By Ilia Gogoladze, Mansoor Ur Rehman, Qaisar Shafi.
[arXiv:0907.0728 [hep-ph]].
10.1103/PhysRevD.80.105002.
Phys.Rev. D80 (2009) 105002.

Type II Seesaw and the PAMELA/ATIC Signals.
By Ilia Gogoladze, Nobuchika Okada, Qaisar Shafi.
[arXiv:0904.2201 [hep-ph]].
10.1016/j.physletb.2009.07.035.
Phys.Lett. B679 (2009) 237-241.

Yukawa Unification and Neutralino Dark Matter in
SU(4)(c) x SU(2)(L) x SU(2)(R).

By Ilia Gogoladze, Rizwan Khalid, Qaisar Shafi.
[arXiv:0903.5204 [hep-ph]].
10.1103/PhysRevD.79.115004.
Phys.Rev. D79 (2009) 115004.

CMSSM Spectroscopy in light of PAMELA and ATIC.
By Ilia Gogoladze, Rizwan Khalid, Qaisar Shafi, Hasan Yuksel.
[arXiv:0901.0923 [hep-ph]].
10.1103/PhysRevD.79.055019.
Phys.Rev. D79 (2009) 055019.

Soft Probes of SU(5) Unification.
By Ilia Gogoladze, Rizwan Khalid, Nobuchika Okada, Qaisar Shafi.
[arXiv:0811.1187 [hep-ph]].
10.1103/PhysRevD.79.095022.
Phys.Rev. D79 (2009) 095022.

NMSSM and Seesaw Physics at LHC.
By Ilia Gogoladze, Nobuchika Okada, Qaisar Shafi.
[arXiv:0809.0703 [hep-ph]].
10.1016/j.physletb.2008.12.068.
Phys.Lett. B672 (2009) 235-239.

Higgs Boson Mass, Sparticle Spectrum and Little Hierarchy Problem in
Extended MSSM.

By K.S. Babu, Ilia Gogoladze, Mansoor Ur Rehman, Qaisar Shafi.
[arXiv:0807.3055 [hep-ph]].
10.1103/PhysRevD.78.055017.
Phys.Rev. D78 (2008) 055017.

Higgs Boson Mass Bounds in the Standard Model with
Type III and Type I Seesaw.

By Ilia Gogoladze, Nobuchika Okada, Qaisar Shafi.
[arXiv:0805.2129 [hep-ph]].
10.1016/j.physletb.2008.08.023.
Phys.Lett. B668 (2008) 121-125.

Higgs boson mass bounds in a type II seesaw model with triplet scalars.
By Ilia Gogoladze, Nobuchika Okada, Qaisar Shafi.
[arXiv:0802.3257 [hep-ph]].
10.1103/PhysRevD.78.085005.
Phys.Rev. D78 (2008) 085005.

.

I.3 გრავიტაცია, ბრეინ-მოდელები, დამატებითი სივრცე-დროის
განზომილებები


Gravitational Waves from Mirror World.
By Revaz Beradze, Merab Gogberashvili.
[arXiv:1905.02787 [gr-qc]].
10.3390/physics1010007.
MDPI Physics 1 (2019) no.1, 67-75, APS Physics 1 (2019) 67.

Geometry of the Non-Compact G(2).
By Merab Gogberashvili, Alexandre Gurchumelia.
[arXiv:1903.04888 [physics.gen-ph]].

LIGO Signals from the Mirror World.
By Revaz Beradze, Merab Gogberashvili.
[arXiv:1902.05425 [gr-qc]].
10.1093/mnras/stz1295.

Cosmological Constant from the Entropy Balance Condition.
By Merab Gogberashvili.
[arXiv:1807.06943 [physics.gen-ph]].
10.1155/2018/3702498.
Adv.High Energy Phys. 2018 (2018) 3702498.

Cosmological Constant in the Thermodynamic Models of Gravity.
By Merab Gogberashvili, Ucha Chutkerashvili.
[arXiv:1605.04197 [physics.gen-ph]].
10.22606/tp.2017.24002.
Theor.Phys. 2 (2017) 163.

Can Quantum Particles Cross a Horizon?
By Merab Gogberashvili.
[arXiv:1712.02637 [gr-qc]].

Hidden Conformal Symmetry of Sine-Gordon Braneworld Scenarios.
By G. Alencar, Merab Gogberashvili.
[arXiv:1707.04583 [hep-th]].

Black Hole Information Problem and Wave Bursts.
By Merab Gogberashvili, Lasha Pantskhava.
[arXiv:1608.04595 [physics.gen-ph]].
10.1007/s10773-018-3702-x.
Int.J.Theor.Phys. 57 (2018) no.6, 1763-1773.

Conformal (2 + 4)-braneworld.
By Merab Gogberashvili.
[arXiv:1703.00349 [hep-th]].
10.1142/S0218271817501255.
Int.J.Mod.Phys. D26 (2017) no.11, 1750125.

Electroweak Phase Transitions in Einstein's Static Universe.
By Merab Gogberashvili.
[arXiv:1702.08445 [gr-qc]].
10.1155/2018/4653202.
Adv.High Energy Phys. 2018 (2018) 4653202.

Supplying Dark Energy from Scalar Field Dark Matter.
By Merab Gogberashvili, Alexander S. Sakharov.
[arXiv:1702.05757 [astro-ph.CO]].
10.1142/S0218271818501006.
Int.J.Mod.Phys. D27 (2018) no.09, 1850100.

Information-Probabilistic Description of the Universe.
By Merab Gogberashvili.
[arXiv:1504.06183 [physics.gen-ph]].
10.1007/s10773-016-3045-4.
Int.J.Theor.Phys. 55 (2016) no.9, 4185-4195.

Diffractions from the brane and GW150914.
By Merab Gogberashvili, Pavle Midodashvili.
[arXiv:1604.02384 [hep-th]].
10.1209/0295-5075/114/50008.
EPL 114 (2016) no.5, 50008.

Octonionic geometry and conformal transformations.
By Merab Gogberashvili.
[arXiv:1602.07979 [physics.gen-ph]].
10.1142/S0219887816500924.
Int.J.Geom.Meth.Mod.Phys. 13 (2016) no.07, 1650092.

Size of Shell Universe in Light of Fermi GBM Transient Associated
with GW150914.

By Merab Gogberashvili, Alexander Sakharov, Edward Sarkisyan-Grinbaum.
[arXiv:1602.06526 [hep-ph]].
10.1016/j.physletb.2016.10.049.
Phys.Lett. B763 (2016) 397-400.

Standing Waves Braneworlds.
By Merab Gogberashvili, Irakli Mantidze, Otari Sakhelashvili, Tsotne Shengelia.
[arXiv:1602.00607 [hep-th]].
10.1142/S0218271816300196.
Int.J.Mod.Phys. D25 (2016) no.07, 1630019.

Geometrical Applications of Split Octonions.
By Merab Gogberashvili, Otari Sakhelashvili.
[arXiv:1506.01012 [math-ph]].
10.1155/2015/196708.
Adv.Math.Phys. 2015 (2015) 196708.

Split Quaternions and Particles in (2+1)-Space.
By Merab Gogberashvili.
[arXiv:1410.4136 [physics.gen-ph]].
10.1140/epjc/s10052-014-3200-0.
Eur.Phys.J. C74 (2014) no.12, 3200.

Fermions in the 5D Gravity-Scalar Standing Wave Braneworld.
By Merab Gogberashvili, Pavle Midodashvili.
[arXiv:1409.4408 [physics.gen-ph]].
10.1142/S0217751X14501413.
Int.J.Mod.Phys. A29 (2014) no.24, 1450141.

Cosmological Parameters from the Thermodynamic Model of Gravity.
By Merab Gogberashvili, Igor Kanatchikov.
[arXiv:1210.4618 [physics.gen-ph]].
10.1007/s10773-013-1976-6.
Int.J.Theor.Phys. 53 (2014) 1779-1783.

Gauge Fields in the 5D Gravity-Scalar Standing Wave Braneworld.
By Merab Gogberashvili, Pavle Midodashvili.
[arXiv:1312.6241 [hep-th]].
10.1209/0295-5075/104/50002.
EPL 104 (2013) no.5, 50002.

New Class of N-dimensional Braneworlds.
By Merab Gogberashvili, Pavle Midodashvili, Giorgi Tukhashvili.
[arXiv:1310.5696 [gr-qc]].
10.1007/s10714-014-1697-z.
Gen.Rel.Grav. 46 (2014) 1697.

The 5D Standing Wave Braneworld With Real Scalar Field.
By Merab Gogberashvili, Pavle Midodashvili.
[arXiv:1310.1911 [hep-th]].
10.1155/2013/873686.
Adv.High Energy Phys. 2013 (2013) 873686.

On the Dynamics of the Ensemble of Particles in the Thermodynamic Model
of Gravity.

By Merab Gogberashvili.
[arXiv:1309.0376 [gr-qc]].
10.4236/jmp.2014.517189.
J.Mod.Phys. 5 (2014) 1945-1957.

Hierarchy of Fermion Masses in the 5D Standing Wave Braneworld.
By Merab Gogberashvili, Giorgi Tukhashvili.
[arXiv:1308.5840 [hep-th]].
10.1007/s10773-014-2311-6.
Int.J.Theor.Phys. 54 (2015) no.4, 1154-1161.

Numerical Solutions in 5D Standing Wave Braneworld.
By Merab Gogberashvili, Otari Sakhelashvili, Giorgi Tukhashvili.
[arXiv:1304.6079 [hep-th]].
10.1142/S0217732313500922.
Mod.Phys.Lett. A28 (2013) 1350092.

Localization Problem in the 5D Standing Wave Braneworld.
By Merab Gogberashvili, Pavle Midodashvili, Levan Midodashvili.
[arXiv:1209.3815 [hep-th]].
10.1142/S0218271812500812.
Int.J.Mod.Phys. D21 (2012) 1250081.

Localization of Matter Fields in the 5D Standing Wave Braneworld.
By Merab Gogberashvili.
[arXiv:1204.2448 [hep-th]].
10.1007/JHEP09(2012)056.
JHEP 1209 (2012) 056.

Quantum Behavior in Machian Model.
By Merab Gogberashvili.
[arXiv:0910.0169 [physics.gen-ph]].

Anisotropic inflation in a 5D standing wave braneworld and effective
dimensional reduction.

By Merab Gogberashvili, Alfredo Herrera-Aguilar, Dagoberto Malagon-Morejon,
Refugio Rigel Mora-Luna.
[arXiv:1202.1608 [hep-th]].
10.1016/j.physletb.2013.07.031.
Phys.Lett. B725 (2013) 208-211.

Thick brane isotropization in the 5D anisotropic standing wave braneworld model.
By Merab Gogberashvili, Alfredo Herrera-Aguilar, Dagoberto Malagon-Morejon,
Refugio Rigel Mora-Luna, Ulises Nucamendi.
[arXiv:1201.4569 [hep-th]].
10.1103/PhysRevD.87.084059.
Phys.Rev. D87 (2013) 084059.

Massless fermions in the standing wave braneworld.
By Merab Gogberashvili, Pavle Midodashvili, Levan Midodashvili.
[arXiv:1109.3758 [hep-th]].

Localization of gauge bosons in the 5D standing wave braneworld.
By Merab Gogberashvili, Pavle Midodashvili, Levan Midodashvili.
[arXiv:1105.1866 [hep-th]].
10.1016/j.physletb.2011.12.004.
Phys.Lett. B707 (2012) 169-172.

Localization of scalar and tensor fields in the standing wave braneworld
with increasing warp factor.

By Merab Gogberashvili, Pavle Midodashvili, Levan Midodashvili.
[arXiv:1105.1701 [hep-th]].
10.1016/j.physletb.2011.07.008.
Phys.Lett. B702 (2011) 276-280.

Machian origin of the entropic gravity and cosmic acceleration.
By Merab Gogberashvili, Igor Kanatchikov.
[arXiv:1012.5914 [physics.gen-ph]].
10.1007/s10773-011-0971-z.
Int.J.Theor.Phys. 51 (2012) 985-997.

An Anisotropic Standing Wave Braneworld and Associated Sturm-Liouville
Problem.

By Merab Gogberashvili, Alfredo Herrera-Aguilar, Dagoberto Malagon-Morejon.
[arXiv:1012.4534 [hep-th]].
10.1088/0264-9381/29/2/025007.
Class.Quant.Grav. 29 (2012) 025007.

On the fine structure constant in the Machian universe.
By Merab Gogberashvili, Igor Kanatchikov.
[arXiv:1009.2266 [gr-qc]].

Thermodynamic Gravity and the Schrodinger Equation.
By Merab Gogberashvili.
[arXiv:1008.2544 [gr-qc]].
10.1007/s10773-011-0727-9.
Int.J.Theor.Phys. 50 (2011) 2391-2402.

Anti-de-Sitter Island-Universes from 5D Standing Waves.
By Merab Gogberashvili, Douglas Singleton.
[arXiv:0904.2828 [hep-th]].
10.1142/S021773231003358X.
Mod.Phys.Lett. A25 (2010) 2131-2143.

Standing gravitational waves from domain walls.
By Merab Gogberashvili, Shynaray Myrzakul, Douglas Singleton.
[arXiv:0904.1851 [gr-qc]].
10.1103/PhysRevD.80.024040.
Phys.Rev. D80 (2009) 024040.

Topological Solution to the Cylindrical Einstein-Maxwell Equations.
By Merab Gogberashvili.
[arXiv:0904.1685 [gr-qc]].
10.1142/S0218271809015308.
Int.J.Mod.Phys. D18 (2009) 1765-1771.

'Universal' FitzGerald Contractions.
By Merab Gogberashvili.
[arXiv:0807.2439 [gr-qc]].
10.1140/epjc/s10052-009-1108-x.
Eur.Phys.J. C63 (2009) 317-322.

Trapping of Nonlinear Gravitational Waves by Two-Fluid Systems.
By Merab Gogberashvili, Ramaz Khomeriki.
[arXiv:0808.1295 [gr-qc]].
10.1142/S0217732309032083.
Mod.Phys.Lett. A24 (2009) 2761-2768.

II. ATLAS / CMS კოლაბორაცია


Jet energy scale measurements and their systematic uncertainties in proton-
proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector.

By ATLAS Collaboration (M. Aaboud et al.).
[arXiv:1703.09665 [hep-ex]].
10.1103/PhysRevD.96.072002.
Phys.Rev. D96 (2017) no.7, 072002.

Performance of the ATLAS Trigger System in 2015.
By ATLAS Collaboration (Morad Aaboud et al.).
[arXiv:1611.09661 [hep-ex]].
10.1140/epjc/s10052-017-4852-3.
Eur.Phys.J. C77 (2017) no.5, 317.

Luminosity determination in pp collisions at $\sqrt{s}$ = 8 TeV using the
ATLAS detector at the LHC.

By ATLAS Collaboration (Morad Aaboud et al.).
[arXiv:1608.03953 [hep-ex]].
10.1140/epjc/s10052-016-4466-1.
Eur.Phys.J. C76 (2016) no.12, 653.

Muon reconstruction performance of the ATLAS detector in proton–proton
collision data at $\sqrt{s}$ =13 TeV.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1603.05598 [hep-ex]].
10.1140/epjc/s10052-016-4120-y.
Eur.Phys.J. C76 (2016) no.5, 292.

Topological cell clustering in the ATLAS calorimeters and its performance in
LHC Run 1.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1603.02934 [hep-ex]].
10.1140/epjc/s10052-017-5004-5.
Eur.Phys.J. C77 (2017) 490.

Performance of $b$-Jet Identification in the ATLAS Experiment.
By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1512.01094 [hep-ex]].
10.1088/1748-0221/11/04/P04008.
JINST 11 (2016) no.04, P04008.

Performance of pile-up mitigation techniques for jets in $pp$ collisions at
$\sqrt{s}=8$ TeV using the ATLAS detector..

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1510.03823 [hep-ex]].
10.1140/epjc/s10052-016-4395-z.
Eur.Phys.J. C76 (2016) no.11, 581.

Constraints on new phenomena via Higgs boson couplings and invisible decays with
the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1509.00672 [hep-ex]].
10.1007/JHEP11(2015)206.
JHEP 1511 (2015) 206.

Search for an additional, heavy Higgs boson in the $H\rightarrow ZZ$ decay channel
at $\sqrt{s} = 8\;\text{ TeV }$ in $pp$ collision data with the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1507.05930 [hep-ex]].
10.1140/epjc/s10052-015-3820-z.
Eur.Phys.J. C77 (2017) 490.

Measurements of the Higgs boson production and decay rates and coupling
strengths using pp collision data at $\sqrt{s}=7$ and 8 TeV in the ATLAS experiment.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1507.04548 [hep-ex]].
10.1140/epjc/s10052-015-3769-y.
Eur.Phys.J. C76 (2016) no.1, 6.

Search for high-mass diboson resonances with boson-tagged jets in proton-proton
collisions at $ \sqrt{s}=8 $ TeV with the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1506.00962 [hep-ex]].
10.1007/JHEP12(2015)055.
JHEP 1512 (2015) 055.

Search for new phenomena in final states with an energetic jet and large missing
transverse momentum in pp collisions at $\sqrt{s}=$8 TeV with the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1502.01518 [hep-ex]].
10.1140/epjc/s10052-015-3517-3, 10.1140/epjc/s10052-015-3639-7.
Eur.Phys.J. C75 (2015) no.7, 299, Erratum: Eur.Phys.J. C75 (2015) no.9, 408.

Evidence for the Higgs-boson Yukawa coupling to tau leptons with the
ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1501.04943 [hep-ex]].
10.1007/JHEP04(2015)117.
JHEP 1504 (2015) 117.

Measurement of Higgs boson production in the diphoton decay channel in pp
collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1408.7084 [hep-ex]].
10.1103/PhysRevD.90.112015.
Phys.Rev. D90 (2014) no.11, 112015.

Measurements of Higgs boson production and couplings in the four-lepton channel in
pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1408.5191 [hep-ex]].
10.1103/PhysRevD.91.012006.
Phys.Rev. D91 (2015) no.1, 012006.

Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data.
By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1407.5063 [hep-ex]].
10.1140/epjc/s10052-014-3071-4.
Eur.Phys.J. C74 (2014) no.10, 3071.

Measurement of the muon reconstruction performance of the ATLAS detector using
2011 and 2012 LHC proton–proton collision data.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1407.3935 [hep-ex]].
10.1140/epjc/s10052-014-3130-x.
Eur.Phys.J. C74 (2014) no.11, 3130.

Search for new phenomena in the dijet mass distribution using $p-p$ collision data
at $\sqrt{s}=8$ TeV with the ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1407.1376 [hep-ex]].
10.1103/PhysRevD.91.052007.
Phys.Rev. D91 (2015) no.5, 052007.

Measurement of the $t\bar{t}$ production cross-section using $e\mu $ events with
b-tagged jets in pp collisions at $\sqrt{s}$ = 7 and 8 $\,\mathrm{TeV}$ with the
ATLAS detector.

By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1406.5375 [hep-ex]].
10.1140/epjc/s10052-014-3109-7.
10.1140/epjc/s10052-016-4501-2.
Eur.Phys.J. C74 (2014) no.10, 3109, Addendum: Eur.Phys.J. C76 (2016) no.11, 642.

Measurement of the Higgs boson mass from the $H\rightarrow \gamma\gamma$ and $H \rightarrow ZZ^{*} \rightarrow 4\ell$ channels with the ATLAS detector using 25 fb$^{-1}$ of $pp$ collision data.
By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1406.3827 [hep-ex]].
10.1103/PhysRevD.90.052004.
Phys.Rev. D90 (2014) no.5, 052004.

Measurement of the $Z/\gamma^*$ boson transverse momentum distribution in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector.
By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1406.3660 [hep-ex]].
10.1007/JHEP09(2014)145.
JHEP 1409 (2014) 145.

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using $\sqrt{s}=8$ TeV proton--proton collision data.
By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1405.7875 [hep-ex]].
10.1007/JHEP09(2014)176.
JHEP 1409 (2014) 176.

Search for high-mass dilepton resonances in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector.
By ATLAS Collaboration (Georges Aad et al.).
[arXiv:1405.4123 [hep-ex]].
10.1103/PhysRevD.90.052005.
Phys.Rev. D90 (2014) no.5, 052005.

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}=7 $ and 8 TeV.
By ATLAS and CMS Collaborations (Georges Aad et al.). [arXiv:1606.02266 [hep-ex]].
10.1007/JHEP08(2016)045.
JHEP 1608 (2016) 045.

Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeVwith the ATLAS and CMS Experiments.
By ATLAS and CMS Collaborations (Georges Aad et al.). [arXiv:1503.07589 [hep-ex]].
10.1103/PhysRevLett.114.191803.
JHEP 1504 (2015) 117.

Observation of a new boson at a mass of 125 GeV with the CMS experiment
at the LHC.

By CMS Collaboration (Serguei Chatrchyan et al.).
[arXiv:1207.7235 [hep-ex]].
10.1016/j.physletb.2012.08.021.
Phys.Lett. B716 (2012) 30-61.

Search for Lepton-Flavour-Violating Decays of the Higgs Boson.
By CMS Collaboration (Vardan Khachatryan et al.).
[arXiv:1502.07400 [hep-ex]].
10.1016/j.physletb.2015.07.053.
Phys.Lett. B749 (2015) 337-362.

Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at $\sqrt{s} = 8$ TeV.
By CMS Collaboration (Vardan Khachatryan et al.).
[arXiv:1408.3583 [hep-ex]].
10.1140/epjc/s10052-015-3451-4.
Eur.Phys.J. C75 (2015) no.5, 235.

.

III. კოსმოსური სხივების ფიზიკა


About the physical nature of some peculiarities of the primary cosmic radiation nuclei and gamma quanta spectra.
By T.T. Barnaveli, N.A. Eristavi, I.V. Khaldeeva.
[arXiv:1812.08098 [astro-ph.HE]]. 2018

Extensive air showers' arrival direction distribution by the TSU array under GELATICA experiment.
By Yu.G. Verbetsky, M.S. Svanidze, A. Iashvili, I. Iashvili, L. Kakabadze.
[arXiv:1804.04923 [astro-ph.HE]], 2018

About the possible signature of pion bose condensation contribution in the high energy cosmic ray nuclear interactions.
By T.T. Barnaveli, T.T. Barnaveli, A.P. Chubenko, N.A. Eristavi, N.M. Nesterova,
I.V. Khaldeeva.
[arXiv:1604.04152 [astro-ph.HE]], 2016

First results on the spatiotemporal correlations of the remote Extensive Air Shower pairs.
By Yu Verbetsky, M. Svanidze, A. Iashvili, E. Tskhadadze, D. Kokorashvili.
10.1088/1742-6596/409/1/012085.
J.Phys.Conf.Ser. 409 (2013)no.1, 012085.

Registration of the signal of a star and PCR sources optical radiation by means of the installation, aimed at the investigation of EAS of high energy cosmic rays.
By T.T. Barnaveli, N.A. Eristavi, I.V. Khaldeeva, A.P. Chubenko, N.M. Nesterova.
[arXiv:1308.5463 [astro-ph.HE]], 2013

The Eas Bursts - High Energy Extensive Air Showers Correlated in Time.817844
By T.T. Barnaveli, T.T. Barnaveli, Jr., N.A. Eristavi, I.V. Khaldeeva, A.P. Chubenko,
N.M. Nesterova.
[arXiv:0904.1944 [astro-ph.HE]], 2009

Improved Method of the Extensive Air Shower Arrival Direction Estimation.
By M.S. Svanidze, Yu.G. Verbetsky.
[arXiv:0804.1751 [astro-ph]], 2008

.

პუბლიკაციების სრული სია იხილეთ მაღალი ენერგიების ფიზიკის საიტზე:

http://inspirehep.net/search?p=%22Tbilisi%2C%20Inst.%20Phys.%22&f=affiliation